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Abstract. Detecting depression in early stages is critical for effective
intervention, but hard in traditional healthcare systems. Moreover, re-
cent Al-based systems are black-boxes, which limits their usability and
user trust in such sophisticated domains. While prior work has provided
a semantic framework for text-based depression indicators, a comprehen-
sive ontology covering audio and video modalities remains unexplored.
This work proposes an ontology-regularized neural network (OR-NN)
that incorporates structured multimodal depression features into model
training via SHAP-informed constraints. The extended ontology models
acoustic and visual descriptors, semantically mapped to psychological
states, to provide better explanations. Neural Network is regularised by
SHAP-informed constraints by introducing a custom regularisation loss
that penalises deviations between model weight distributions and feature
importances, and dropout bias that increases the probability of dropping
out less important features during training. Experiments on the EDAIC
dataset demonstrate that the proposed approach outperforms baseline
neural models in both predictive accuracy and other metrics
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1 Introduction

Depression is one of the most widespread mental health disorders, affecting more
than 280 million individuals globally and ranking as a leading cause of disability
according to the World Health Organization. Early detection and monitoring are
essential for effective intervention, yet traditional diagnosis methods rely heav-
ily on self-reporting and clinical interviews, which are often subjective, time-
consuming, and limited in scalability. With the rapid growth of digital data
streams (ranging from social media posts to voice recordings and video inter-
actions), smart healthcare systems are increasingly leveraging machine learning
(ML) and deep learning (DL) techniques for automated depression detection.
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A growing body of research has explored depression recognition through tex-
tual data (e.g., social media posts, clinical notes), acoustic features (e.g., pitch,
loudness), and visual behavior (e.g., facial expressions, gaze, head pose). Among
these, speech and facial cues are particularly valuable, as they capture subtle
changes in prosody, vocal energy, affective expressivity, and social engagement.
These multimodal features provide strong predictive signals for detecting de-
pression.

Existing deep learning models achieve promising performance but remain
opaque black boxes, limiting their trust and thus usability in a high-stakes do-
main like healthcare. Clinicians require not only accurate predictions but also
interpretable reasoning consistent with psychological knowledge. Ontologies pro-
vide a structured way to encode domain expertise by mapping low-level com-
putational features to higher-level constructs such as social withdrawal and ex-
haustion. Prior work [2], structures text-based features, but a comprehensive
multimodal ontology remains unexplored.

Additionally, while explainability techniques such as SHAP have become pop-
ular for post-hoc feature attribution, their integration into training remains lim-
ited. We argue that SHAP global importances provide a natural bridge between
ontology knowledge and neural learning, guiding models to align with clinically
meaningful features during training.

To address these gaps, we propose an Ontology-Regularized Neural Network
(OR-NN) framework that fuses multimodal depression ontology with neural
training. This work has the following contributions:

1. Extending DFO ontology to include audio and video descriptors linked to
psychological constructs.

2. Designing methods for applying SHAP informed constraints on neural net-
work and evaluating the proposed OR-NN against baseline neural network
models, demonstrating improved accuracy and explainability

3. Generating and systematically comparing SHAP-based model explanations
with and without ontology integration to assess the impact on interpretabil-

ity.

2 Related Work

Research on automatic depression detection has advanced along two partly-
overlapping axes: (1) development of robust multimodal feature extraction and
fusion methods and (2) methods that improve interpretability and knowledge
alignment by infusing domain knowledge or producing clinically-meaningful ex-
planations. We summarize these strands below and situate the scope of the
current study.

2.1 Multimodal Fusion Approaches

Recent work has explored multimodal depression detection to combine diverse
signals for stronger prediction. For example, a Transformer-based feature en-
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hancement network [5] integrated video, audio, and rPPG signals, capturing
intra- and inter-modal relationships via stacked Transformers and graph fusion
networks, achieving high performance on AVEC2013 and AVEC2014. Another
approach, MFM-Att [6], leveraged audio-visual-text data with multi-level atten-
tion and LSTM/Bi-LSTM networks, learning intra- and inter-modal correlations
and outperforming prior baselines on DAIC-WOZ. These studies demonstrate
the effectiveness of multimodal feature extraction and fusion for depression de-
tection. Similarly, text-driven LLM models have been combined with different
type of features to predict depression severity. A BILSTM-based tri-modal fusion
model incorporating audio (MFCCs), visual (AUs), and textual features with
GPT-4 embeddings achieved strong performance on the DAIC-WOZ dataset,
surpassing several state-of-the-art baselines [I1] . Some studies|[16]. [I3] extended
LLMs by integrating acoustic landmarks into textual transcripts, showing that
speech-aware LLM framework improves multimodal depression detection beyond
text-only systems .

2.2 Explainability Oriented Systems

While multimodal methods improve performance, interpretability has also be-
come a focus. The EMDRC task explicitly framed multimodal depression recog-
nition as both prediction and explanation, generating PHQ-8—grounded symp-
tom summaries alongside severity scores [I8]. Similarly, the PSAT framework [3]
embedded clinical practice guidelines (CPG) into Transformer attention, pro-
ducing clinician-interpretable outputs grounded in PHQ-9 and SNOMED-CT.
Additionally, different recent studies have integrated SHAP as a post-hoc ex-
planation method [15] [T4]. This reflects a shift toward clinically meaningful
explanations rather than purely statistical predictions.

2.3 SHAP guided models

Several studies have integrated SHAP beyond post-hoc explanation. SHAP-
guided regularization has been proposed to impose entropy-based penalties, en-
couraging sparse and stable feature attributions during training [I2]. Other work
such as LassoNet [8] focuses on feature selection, enforcing hierarchical con-
straints so that only relevant features contribute to hidden units. More recently,
SHAP-informed optimization methods [7fJuse SHAP values to guide gradient up-
dates and learning rates, with efficient variants like C-SHAP and FastSHAP
reducing computational cost.

2.4 Ontology Based and Neuro Symbolic Approaches

Parallel to these methods, ontology-guided frameworks have emerged to align
models with clinical knowledge. The DepressionFeature Ontology (DFO) was ex-
tended to social media concepts and validated on text-based depression datasets
[2]. Building on DFO, the KiNN model [1] infused both domain knowledge and
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commonsense reasoning, offering user-level explainability. Neuro-symbolic ap-
proaches such as TAM-SenticNet [4] combined neural sentiment analysis with
symbolic reasoning from SenticNet for structured interpretation of emotional
signals.

Together, these advances highlight two converging trends: performance gains
from multimodal fusion and explainability through knowledge alignment. How-
ever, most prior systems remain text-focused, or they integrate symbolic knowl-
edge in limited or post-hoc ways. In contrast, our study introduces a multimodal
OR-NN framework that embeds SHAP-derived global feature importances into
the learning objective, driving prediction and explicitly aligning model explana-
tions with an ontology of depression symptoms.

3 Designing multimodal ontology

The methodology followed in this work is organised into three main phases:
Feature identification,extraction and preprocessing , Ontology Construction via
Neural network and SHAP, Ontology Knowledge infusion in Neural Network.

3.1 Feature Identification

We use the EDAIC dataset, a widely used benchmark for multimodal depres-
sion detection. The dataset contains clinical interviews with audio, video, and
transcribed text, enabling multimodal feature extraction. We employ standard-
ised, interpretable descriptors for audio and video, such as pitch, jitter, loudness,
gaze, and facial action units (AUs). Unlike features extracted via Wav2Vec or
MFCCs as in [I7], these descriptors have direct semantic mappings to psycholog-
ical constructs, making them inherently suitable for ontology-based modelling.
We chose statistical aggregation over methods like Fisher vector encoding as in
[I7] or temporal stacking as in [9]) to ensure clean, ontology-aligned represen-
tations, avoiding issues related to frame-wise concatenation and variable-length
sequences.

Audio Features: For the acoustic analysis, we extracted a comprehensive set
of frequency, energy, spectral, temporal, and cepstral features, which have pre-
viously been associated with depression-related speech patterns.

— Frequency-related Parameters Pitch, or the fundamental frequency of
vocal fold vibration, was captured through several statistics including the
mean, normalized standard deviation, the 20th, 50th, and 80th percentiles,
the range between the 20th and 80th percentiles, and the slopes of rising
and falling signal parts. Formant-related measures included the mean and
normalized deviation of the first three formant frequencies and their corre-
sponding bandwidths.

— Energy and Amplitude-related Parameters Shimmer was extracted to
capture short-term variations in sound wave amplitude Loudness was repre-
sented by the mean and normalized deviation, percentiles, the range between
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percentiles, and the slopes of rising and falling parts. The Harmonics-to-
Noise Ratio (HNR) quantified harmonic content relative to noise.

— Spectral Parameters Spectral balance was captured using the alpha ratio,
and the Hammarberg Index, which compares energy between peaks. Spectral
slopes were computed for the 0-500 Hz and 500-1500 Hz ranges. Other
measures included formant-relative energies, harmonic differences, and their
normalized deviations.

— Temporal Features Temporal aspects included the rate of loudness peaks
per second, the mean and standard deviation of continuously voiced regions,
the mean and standard deviation of continuously unvoiced regions, and the
pseudo-syllable rate, a rough measure of speaking tempo.

— Extended Set of Features Additional extended features included mea-
sures over unvoiced regions such as the alpha ratio, Hammarberg Index,
and spectral slopes. Mel-frequency cepstral coefficients (first four coefficients,
with mean and coefficient of variation computed for both the full signal and
voiced-only regions) were also extracted. Spectral flux was measured through
the mean and coefficient of variation across voiced and unvoiced regions,
along with bandwidth measures of the second and third formants. Finally,
the equivalent sound level was computed as the average sound pressure level
across the entire recording.

Video Features: Visual descriptors were extracted from frame-level recordings
and aggregated into statistical functionals. These cover:

— Pose-related Features Head translation was measured along the three
spatial axes. For each axis(x,y,z), the average position, variability, range of
motion, and velocity was calculated . Head rotation was similarly represented
along three axes: pitch (nodding), yaw (turning the head side to side), and
roll (tilting).

— Gaze-related Features Eye gaze features included horizontal (x-axis) and
vertical (y-axis) angles, for which the mean, variability, and range were com-
puted. In addition, the fraction of frames with downward gaze was quantified.

— Facial Action Unit (AU) Intensity Features We extracted intensity-
based features for 17 action units (AUs), which represent muscle activations
in the face. For each AU (all AUs described in [I0]), we computed five func-
tionals: mean intensity, standard deviation, maximum value, fraction of ac-
tive frames, and average duration of continuous activation. These measures
capture both the strength and stability of facial expressions.

— Facial Action Unit (AU) Occurrence Features Occurrence-based fea-
tures were also extracted for each of the 17 AUs. These included the pro-
portion of frames where the AU occurred, the average duration of activation
and the number of transitions representing how often the AU switched on
and off. Such occurrence statistics reflect the frequency and persistence of
facial expressions.
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Fig. 1. Depression Feature Ontology (DFO) Extension Process. Multimodal fea-
tures extracted from audio (eGeMAPS) and video (OpenFace) are modeled through
modality-specific networks. SHAP gives significant features with importances which
are integrated into the DFO with relation to semantic mappings from the web.

3.2 Ontology Construction via Neural network and SHAP

The extracted audio and video descriptors, along with their statistical func-
tionals, form the low-level computational features that serve as input to our
SHAP-based global importance estimation. To guide ontology construction, we
trained a simple feedforward neural network on the extracted audio (81) and
video (170) features. The network consisted of two fully connected layers(128
and 64 units) with ReLU activations, dropout (default=0.3), and a sigmoid out-
put for binary depression prediction. After training for 300 epochs, we applied
SHAP (SHapley Additive exPlanations) to compute global feature importances.
Input features were standardized, a random seed of 42 ensured reproducibility,
and 100 background samples were used for SHAP output. Refer Figure

For each feature, the mean absolute SHAP value across test samples was
calculated, producing a ranked list of features by relevance. We also derived
semantic mappings between low-level multimodal descriptors and psychological
constructs using SHAP-based global importances(refer Figure [3). This proce-
dure ensures that the ontology captures both low-level descriptors and clinically
meaningful patterns, forming the basis for ontology-regularized model training.
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Fig. 2. Textual, audio, and video features are independently processed through
modality-specific neural networks. The Depression Feature Ontology (DFO) provides
domain knowledge through an importance vector, which is injected into the dropout
mechanism and custom loss. Outputs from all modalities are fused using a majority
voting classifier to generate final predictions. The framework also identifies the most in-
fluential features for each individual and leverages the ontology to provide interpretable
explanations of model decisions.

4 Ontology Knowledge Infusion in Neural Network

This work implements a hybrid neural network with two key mechanisms,
custom loss and importance-biased dropout, to leverage feature importance for
better interpretability and generalization (See Figure [2)).

Custom Loss Function. The custom loss incorporates SHAP-derived feature im-
portances into the training objective. Here, wi € R4*" is the first-layer weights,

and s € R? is the normalized importance vector. The regularization term penal-
izes deviations between the mean weight per input feature and its importance:

d
1
Ereg = g Z (wl,i - 572)2 (1)
i=1

The total loss is calculated as:
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where LpcE is the standard binary cross-entropy, and A is a hyperparameter
controlling the regularization strength. Features with higher SHAP importance
are encouraged to maintain stronger connections in the first layer, while less
important features are suppressed. Hence, the ontology only controls how the
model starts "seeing" the data, not how it decides later. This step is followed to
avoid over-constraining the model and losing its generalization.

Importance-Biased Dropout. To further leverage feature relevance, A custom
dropout mechanism is introduce that scales the dropout probability inversely
with the SHAP-derived importance scores. Specifically, for each feature i, let s;
denote its SHAP importance, the dropout probability is defined as:

drop 54 .
; = Pbase | 1 — , =1,...,d 3
p; Pb < a ($)> ? ( )

During training, each input feature x; is independently zeroed out with prob-
ability p?mp. A binary mask of the same dimensionality as the input is generated
prior to the first linear layer, ensuring that dropout is applied directly to input
features rather than hidden activations. This allows the network to focus more
on important features and improves robustness to noisy or less relevant inputs.
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Reproducibility: All hyperparameters (learning rate, optimiser, number of
epochs, layer sizes, dropout rates) were kept the same as in the baseline experi-
ments described in Section 3. Random seeds for PyTorch, NumPy, and Python
random module were fixed at 42. Input features were standardised and missing
values imputed with median values. SHAP importance vectors were normalised
for use in both custom loss and dropout biasing. Ontology regularisation adds
conceptual constraints, not extra layers, so the runtime and memory overhead
is negligible or even slightly reduced. Our method uses fewer parameters than
the baseline (0.16M vs 0.28M) and achieves faster training per epoch (2.06 s
vs 3.52 s). It also demonstrates lower inference latency, meaning predictions
can be made almost instantly (0.02 ms vs 0.05 ms). These results indicate that
ontology regularisation provides meaningful conceptual constraints without in-
creasing computational overhead, and that it scales efficiently for both training
and real-time inference.

5 Results and Discussion

5.1 Dataset and Evaluation Metrics

Due to the high class imbalance in the dataset (approximately 75% non-depressed
participants), accuracy alone can be misleading. Therefore, we also report pre-
cision, recall, Fl-score, Matthews Correlation Coefficient (MCC) to provide a
balanced evaluation of model performance.

5.2 Performance Comparison Setup

To isolate the effect of knowledge infusion we have (a) included unimodal (audio-
only, video-only) baselines with the multimodal baseline, (b) trained the same
neural architecture without ontology regularization. These choices directly mea-
sure the contribution of each modality and the ontology regularizer on the same
dataset and setup. Reproducing a large number of external, multimodal base-
lines proved impractical due to differences in dataset preprocessing and modality
coverage; instead, we selected internal baselines that control for architecture and
dataset, thereby directly measuring the impact of knowledge infusion. We ma-
jorly want to answer the following questions.

— Does ontology help over plain baselines?
— Which technique (DB, CL, or both) works better?
— How do unimodal vs multimodal setups compare?

5.3 Results

Table [1] presents the performance of different modality combinations under two
experimental settings: without ontology and with ontology regularization. Text
models are highly conservative, yielding strong precision but almost negligible
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Table 1. Performance comparison of modalities with and without ontology infusion

Model Acc Prec Recall F1 MCC
Audio w/o ontology 0.67 0.43 0.18 0.25 0.09
Video w/o ontology 0.63 0.29 0.12 0.17 -0.02
Video w ontology 0.72 0.58 0.41 0.48 0.31
Audio w ontology 0.65 0.44 0.47 0.46 0.20
Text 0.71 0.60 0.18 0.27 0.20
MM (A+V+T) 0.70 1.00 0.06 0.11 0.20

MM (A+V+T) w Ontology 0.74 0.80 0.24 0.36 0.33

recall, which reflects a tendency to predict only the majority class. Audio and
video features perform moderately, with video outperforming audio in F1-score
and MCC. The ontology-guided models achieve higher F1-score and MCC, in-
dicating a better balance between precision and recall. The improvements are
especially notable for audio and video modalities, reflecting the richer feature sets
and structured mappings provided by the ontology. SHAP-guided custom loss
reduces false negatives, enabling the model to better identify depressed individ-
uals, while importance-biased dropout mitigates overfitting on less informative
features.

Table 2. Video modality with and without ontology

Model Acc Prec Recall F1 MCC
Simple w/o ontology 0.63 0.29 0.12 0.17 -0.02
Dropout biasing 0.72 0.58 0.41 0.48 0.31
Custom loss 0.70 0.57 0.24 0.33 0.21
DB + CL 0.67 0.45 0.29 0.36 0.15

Table 3. Audio modality with and without ontology

Model Acc Prec Recall F1 MCC
Simple w/o ontology 0.67 0.43 0.18 0.25 0.09
Dropout biasing 0.61 0.39 041 0.40 0.11
Custom loss 0.63 0.38 0.29 0.33 0.08
DB + CL 0.65 0.44 0.47 0.46 0.20

In unimodal settings, video networks (Table collapse without ontology
support, with poor recall, while dropout biasing provides the most robust im-
provements. By contrast, audio networks(Table[3)) achieve their best performance
only when both custom loss and dropout biasing are applied together, reflect-
ing a modality-dependent effect: video is ontology-dependent, while audio is
ontology-enhanced.
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Table 4. Majority voting for multimodal fusion.

Note: Model labels follow the format Audio-Video. CL = Custom Loss, DB = Dropout
Biasing. For example, CL-DB means the audio network uses Custom Loss while the
video network uses Dropout Biasing. If both appear together (e.g., CL,DB-CL), it
means both techniques were applied to that modality. Loss uses A = 1

Model Acc Prec Recall F1 MCC
CL-CL 0.70 1.00 0.06 0.11 0.20
CL-DB 0.69 0.50 0.06 0.11 0.08
CL-CL,DB 0.70 0.60 0.18 0.27 0.20
DB-CL 0.70 0.67 0.12 0.20 0.18
DB-DB 0.70 1.00 0.06 0.11 0.20

DB-CL,DB 0.69 0.00 0.00 0.00 0.00
CL,DB-CL 0.70 0.60 0.18 0.27 0.20
CL,DB-DB 0.74 1.00 0.18 0.30 0.36
CL,DB-CL,DB 0.74 1.00 0.18 0.30 0.36

Table 5. Probability average for multimodal fusion.
Note: Model labels follow the format Audio-Video. CL. = Custom Loss, DB = Dropout
Biasing. Loss uses A =1

Model Acc Prec Recall F1 MCC
CL-CL 0.70 1.00 0.06 0.11 0.20
CL-DB 0.69 0.50 0.06 0.11 0.08
CL-CL,DB 0.70 0.67 0.12 0.20 0.18
DB-CL 0.70 0.67 0.12 0.20 0.18
DB-DB 0.70 1.00 0.06 0.11 0.20

DB-CL,DB 0.70 1.00 0.06 0.11 0.20
CL,DB-CL 0.70 0.67 0.12 0.20 0.18
CL,DB-DB 0.72 0.75 0.18 0.29 0.27
CL,DB-CL,DB 0.74 0.80 0.24 0.36 0.33

A similar contrast is observed in multimodal fusion (see Table . Without
the use of an ontology, the combination of audio, video, and text demonstrates
superficially high precision but significantly low recall. This indicates that the
model predominantly favours the majority class. While both probability aver-
aging and majority voting (refer to Tables [5| and yield similar outcomes,
probability averaging tends to be slightly more robust due to its consideration
of prediction confidence.

Table [6] shows that both fusion strategies achieve their highest recall at A =
0.50, indicating that moderate regularisation enhances sensitivity to positive
cases. The consistent performance across nearby A values further confirms the
stability and robustness of our method.

5.4 Discussion

To summarise, ontology-based multimodal configurations substantially improve
recall and deliver more balanced performance. The most effective setup, where
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Table 6. Performance metrics for different A\ values using two ensemble strategies:
Majority Voting and Probability Averaging for CL, DB-CL, DB.

Maj Vote (CL, DB-CL, DB)
A Acc Prec Recall F1 MCC
0.01 0.72 1.00 0.12 0.21 0.29
0.050.74 0.80 0.24 0.36 0.33
0.10 0.69 0.50 0.18 0.26 0.14
0.50 0.72 0.63 0.29 0.40 0.28
1.00 0.72 0.67 0.24 0.35 0.27
Prob Avg (CL, DB-CL, DB)
A Acc Prec Recall F1 MCC
0.01 0.72 0.75 0.18 0.29 0.27
0.05 0.70 0.60 0.18 0.27 0.20
0.10 0.69 0.50 0.24 0.32 0.17
0.50 0.72 0.63 0.29 0.40 0.28
1.00 0.74 0.80 0.24 0.36 0.33

both audio and video networks are regularised with custom loss and dropout
biasing, achieves the highest MCC and F1, with recall rising nearly fourfold
compared to ontology-free fusion. This demonstrates that ontology not only sta-
bilises noisy modalities such as video but also counteracts imbalance-driven bias
in multimodal integration, enabling the detection of minority-class (depressed)
cases that would otherwise be missed.

Fairness: Fairness is a central concern for multimodal mental health sys-
tems. Models trained on limited or homogeneous samples risk producing biased
outcomes when deployed in diverse real-world populations. Future extensions of
this work should prioritize evaluating system performance across different demo-
graphic groups and incorporating balanced datasets to ensure equitable access
to accurate depression detection technologies.

Bias Mitigation: Our ontology-regularized loss contributes to bias mitiga-
tion by guiding the model to attend to clinically meaningful concepts rather
than spurious statistical correlations in the training data. By grounding fea-
ture importance in established depression ontologies, we reduce the likelihood of
overfitting to noise or incidental cues in audio or visual features.

Privacy: Given the sensitivity of mental health data, privacy is a funda-
mental requirement. The dataset used in this study was provided in anonymised
form, with no personally identifiable information about participants. This safe-
guards confidentiality while enabling research.

6 Ontology vs Non-Ontology Interpretations

Figure [ shows the procedure for generating explanations. When the model is
trained we extract top 20 features for audio and video modalities using SHAP
for an individual. Afterwards, we feed them with the ontology and prompt the
LLM to generate explanation useful for the clinicians. Below is the prompt used



Title Suppressed Due to Excessive Length 13

: You will be provided with the top feature importance scores and the transcript
of an individual predicted as depressed. Using the provided ontology, generate
explanations only for features that have interpretations available in the ontol-
ogy. Do not create explanations for features that are missing from the ontology.
Produce separate explanations for audio, video, and text modalities. Fach expla-
nation should be written in a paragraph only, emphasising why these features
indicate depression in this specific individual, rather than simply listing feature
names. Avoid using raw technical feature names. Instead, describe them in inter-
pretable, intuitive terms, while retaining enough technical detail to clarify how
the features relate to the prediction. Ensure that the explanations are personal-
ized to the individual based on their transcript and the top features, rather than
generic descriptions of depression symptoms.

The bold sections represent the betterment of explanations in contrast with the
explanations generated without using ontology. The explanations correspond to
different symptoms of depression and thus could help the clinician get a better
idea of the patient’s condition.

7 Limitations and Future Work

We also experimented with assessing the importance of different words in the
transcripts using SHAP. However, we observed that the results contained much
more noise than meaningful signals, making it unsuitable to directly map these
words to the existing Depression Feature Ontology (DFO). Therefore, in future
work, we plan to enrich the DFO with words related to depression derived from
the EDAIC dataset. Additionally, it is important to note that the transcripts
do not include the interviewer’s questions, which makes them somewhat incom-
plete, as participants’ answers may not fully reflect the context of the questions
asked. For future work, we aim to temporally connect audio and video features
with text, enabling cross-modal reasoning. This integration is expected to gen-
erate richer and more accurate explanations, while also improving the overall
performance of depression detection models. Future work should also explore
larger, balanced datasets and advanced augmentation techniques to improve re-
call without compromising overall performance.
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Ontology-based Audio expla-

nation

Their voice 1is consistently
monotone and low in pitch,
with minimal rising or falling
contours, suggesting reduced
emotional expression and a
flat mood, feeling down
and loss of interest. The
narrow formant bandwidths
and reduced spectral variation
indicate slower and less dy-
namic articulation, reflecting
psychomotor slowing and
low energy Additionally,
the voice exhibits higher insta-
bility in pitch and amplitude,
producing a slightly breathy or
irregular tone, which mirrors
the muscle tension and
fatigue commonly seen in
individuals with depression.
Longer pauses, fewer energy
peaks, and diminished vocal
intensity contribute to speech
that sounds hesitant and weak,
reinforcing  the impression
of low motivation and
reduced engagement.

Non-Ontology Based Audio

Explanation

Their vocal pitch tends to
vary less than typical, with
a narrower overall range, and
moments of pitch decline oc-
cur more gradually, suggesting
monotone or subdued intona-
tion. The rhythm and timing of
voiced segments are irregular,
with shorter and less consis-
tent syllable durations, reflect-
ing reduced speech energy or
slowed verbal production. The
loudness of the voice is gen-
erally lower and less dynamic,
with muted peaks and slower
changes, which can indicate re-
duced emotional expressivity.
At the spectral level, variations
in the resonance of different
vocal frequencies—captured by
shifts in formants and spectral
energy—are less pronounced,
pointing to less dynamic ar-
ticulation and potential ten-
sion in the vocal tract. Micro-
level voice qualities, such as
slight pitch jitter and ampli-
tude irregularities, further sug-
gest subtle instability or fa-
tigue in vocal control.
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Ontology-based Video Expla-

nation

This individual shows blunted
facial expressions and minimal
head and eye movements, re-
flecting low emotional en-
gagement and psychomo-
tor slowing. The reduced
smiling and limited cheek and
lip activity suggest a loss of
interest and pleasure and a
depressed mood. Downward
gaze and limited head shifts
indicate social withdrawal
and low attentional engage-
ment, while subtle reductions
in eye and mouth movements
point to fatigue and low en-

ergy.

Non-Ontology Based Video Ex-

planation

This individual shows clear
signs of emotional withdrawal
and reduced  expressivity.
Movements around the mouth
and cheeks—typically associ-
ated with smiling or engage-
ment—are minimal, suggesting
a blunted affect. In contrast,
subtle tension around the lips
and chin hints at suppressed
emotion or internal strain.
The eyes and eyebrows show
limited movement, reflecting
low energy and diminished
responsiveness. Head and gaze
patterns are also irregular,
indicating difficulty main-
taining focus or connection
during interaction.
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